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A detailed numerical study of the accuracy of the method of characteristics is presented 
for axisymmetric, supersonic flows. Ten numerical schemes and three grid networks were 
investigated for both irrotational and rotational flows. In all cases, the Euler predictor- 
corrector difference scheme was employed, and studies were conducted with predict 
only, predict-correct, and repetitive application of the corrector. The results illustrate 
the general character of the various schemes, and some general observations are drawn. 

1. INTRODUCTION 

A survey of the method of characteristics for nonequilibrium, internal flows 
was presented by Sedney [I]. Several numerical schemes were reviewed, and some 
general conclusions were drawn. However, it is obvious from this survey that 
there is very little quantitative information available concerned specifically with 
establishing the accuracy of the various numerical schemes. The present paper 
presents some typical results of a numerical study of the accuracy of the method 
of characteristics for axisymmetric, supersonic steady flows. The limited study 
conducted by Giese [2] is the only such study found in the open literature. 

In irrotational flow, two characteristic curves exist: right- and left-running Mach 
lines. In rotational flows, an additional characteristic curve exists-the streamline. 
Various grid schemes can be devised based on these characteristic curves, several 
of which are illustrated in Fig. 1. The inverse schemes illustrated in Figs. la and 
lb consist of specifying points in a solution surface at which the properties are 
desired, and then constructing a grid by running characteristics back until they 
intersect the previous solution plane. Initial values are then found by interpola- 
tion. The direct schemes illustrated in Figs. lc-f consist of running characteristics 
forward from known initial points until they intersect. For irrotational flow where 
only two families of characteristics exist, the unique grid scheme illustrated in 
Fig. lc is determined. However, for rotational flows where three families of char- 
acteristics exist, three choices of grid scheme exist depending on which two of the 
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a) INVERSE SCHEME FOR 
IRROTATIONAL FLOW 

b) INVERSE SCHEME FOR 
ROTATIONAL FLOW 

c) DIRECT SCHEME FOR 
IRROTATIONAL FLOW 

d) DIRECT SCHEME FOR 
ROTATIONAL FLOW 
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FIG. 1. General description of possible characteristic grid schemes. 

three characteristics are chosen to define the solution point. These choices are 
illustrated in Figs. Id-f. As discussed by Sedney, for dissipative flows such as 
nonequilibrium, reacting flows or gas-particle flows, grid schemes following the 
streamline and either Mach line are preferred for reasons of stability and accuracy. 
However, for nondissipative, rotational flows, there is no apparent reason why 
one scheme should be preferred over the others. The present paper is concerned 
with irrotational and nondissipative rotational flows based on the grid schemes 
illustrated in Figs. lc and Id, both of which are based on following distinct families 
of right- and left-running Mach lines. 

For the rotational flow scheme, a degree of freedom still exists in the selection 
of the initial point on the rearward running streamline. Three possibilities are 
illustrated in Fig. 2. Grid scheme I continues the rearward running streamline 
back into the known data region until it intersects the first right-running Mach 
line in its path. Another scheme not shown, could be based on intersecting the 
first left Mach line. Grid scheme II extends the streamline back until it intersects 
either the first right Mach line or left Mach line in its path. Grid scheme III 
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FIG. 2. Characteristic grid schemes I, II, and III for rotational flows. 

extends the streamline back until it intersects the diagonal drawn between points 
1 and 2. Once the back point has been determined by one of these three methods, 
a choice of interpolation schemes must be made for determining the flow proper- 
ties at the back point. All three grid schemes were investigated in the present 
study. In grid scheme I, a cubic interpolating polynomial was employed along 
the right Mach line. In grid schemes II and III, linear interpolation was used. It 
was found that all three schemes resulted in comparable accuracy, so the bulk of 
the numerical work presented herein was conducted with grid scheme III, which 
is a more direct extension of the irrotational flow grid scheme. 

Once the choice of grid scheme and interpolation technique have been made, 
the form of the compatibility equations valid on each characteristic must be 
determined, and the finite difference scheme employed for solving the compatibil- 
ity equations must be chosen. Here again, many choices are available, all theoret- 
ically equivalent. The various forms which the compatibility equations can assume 
are developed in the next section. All are investigated numerically in the present 
study. The finite difference scheme generally, if not always, employed in the 
numerical method of characteristics is the modified Euler predictor-corrector 
scheme. Even in this scheme several choices exist for the evaluation of the coeffi- 
cients in the compatibility equations. For example, the coefficients could be 
evaluated based on the average values of the properties along each characteristic, 
or they could be evaluated as average values of the coefficients along each char- 
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acteristic. Both schemes are theoretically second order, and both were investigated 
numerically to determine which, if either, was more accurate. 

Thus, a bewildering choice of numerical schemes are available for the analysis 
of axisymmetric, steady supersonic flow by the numerical method of character- 
istics. The present paper presents the results of an extensive numerical investiga- 
tion of a large number of these schemes in an attempt to determine the better 
approaches. Obviously, the results are only valid exactly for the flows considered. 
However, it is felt that many of the trends found are general in nature. It is hoped 
that other investigators may conduct similar investigations for other flows and 
other finite differences schemes, and eventually a much better understanding of 
the accuracy of the numerical method of characteristics will evolve. 

II. ANALYSIS 

Since the theoretical development of the method of characteristics for axisym- 
metric, supersonic steady flow is well known, only the results needed here to 
develop the finite difference schemes will be considered. For irrotational flow, the 
governing equations are the gas dynamic equation and the irrotationality condi- 
tion : 

(2~2 ~ a”) u, + (v” - 2) c, + 2uvli, - 6&l/y = 0, (1) 
u, - v,. = 0. (2) 

For irrotational flow, the speed of sound a is a known function of the velocity. 
In Eq. (1), 6 = 1 for axisymmetric flow and 0 for the special case of planar, two- 
dimensional flow. Some very brief results are shown for planar two-dimensional 
flow. The characteristics of Eqs. (1) and (2) are the right- and left-running Mach 
lines given by 

(dy/&); = X-t = tan(0 i a), (3) 

where the subscript + denotes left-running Mach lines and the subscript - denotes 
right-running Mach lines. The compatibility equation valid on the Mach lines is 

(u” - a”) du* i [2uv - (u” - a”) A,] dvk - 6(&/y) dxk = 0. 

In the numerical work presented later, the algorithm based on Eq. (4) is called 
scheme 1. By introducing Eq. (3) into Eq. (4), an alternate form of the compatibil- 
ity equation is obtained: 

dui + h,dv, - 6(a2v/y) dx+ = 0. (5) 

Although Eq. (5) is completely equivalent to Eq. (4), it is much simpler and may 
result in improved accuracy. The algorithm based on this equation is scheme 3. 
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A third form of the compatibility equation can be found in terms of the velocity 
magnitude V = (a2 + zP)I/~, the flow angle 0 = tan-l(v/u), and the Mach number M. 

(d/M2 - l/V) dV* f &I+ - S[sin f3/vM cos(8 + a)] dxi = 0. (6) 

The algorithm based on Eq. (6) is scheme 2. 
For nondissipative rotational flows, the governing equations are the continuity 

equation, the two component Euler momentum equations, and the definition of 
the acoustic speed. 

puz + puu + up, + q% + QdY = 0, (7) 
puu, + pvu, + p5 = 0, (8) 
puv, i pvv, $ p?/ = 0, (9) 

up, + up, - a2up, - a2vp, = 0. (10) 

For isentropic, rotational flow, the speed of sound a is a function of pressure and 
density. Equation (10) could be substituted into Eq. (7) to eliminate derivatives 
of the density, resulting in a simpler system. However, the above set of equations 
are in the form of the governing equations for dissipative flows. For example, in 
nonequilibrium reacting flows a nonhomogeneous term must be added to Eq. (lo), 
and the species continuity equation becomes part of the system of equations. In 
gas-particle flows, nonhomogeneous terms appear in Eqs. (8)-(10), and the particle 
drag and energy equations become part of the set. In both cases, the left-hand 
sides of Eqs. (7)-(10) remain unchanged. Thus, the present set of governing equa- 
tions was investigated with the hope that some of the general observations would 
be applicable to dissipative flows. The characteristics of Eqs. (7)-(10) are the 
Mach lines given by Eq. (3) on which the compatibility equation is 

(pv) du* - (pu) dub + [A* - u(uX* - v)/a”] dpk - [v(uX* - v)/y] dx-i, = 0 (11) 

and the streamlines with two compatibility equations: 

(dy/dx) = v/u = tan 8, (12) 
pu du i- pv dv + dp = 0, (13) 

dp - a2 dp = 0. (14) 

The algorithm based on Eqs. (1 l), (13), and (14) is scheme 4. An alternate form 
of these equations is found in terms of V, 8, and M. 

(dm/pV2) dp+ ‘F de* + ~[V/JJ&~T/ CO@ f a)] dx+ = 0, 

pVdV + dp = 0, 

dp - a2 dp = 0. 

The algorithm based on Eqs. (15)-( 17) is scheme 5. 

(15) 

(16) 

(17) 
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Thus, a total of five sets of compatibility equations were found. Since irrotational 
flow is a special case of rotational flow, the rotational flow schemes are valid for 
irrotational flows also. Hence, a total of five different, but theoretically equivalent, 
sets of compatibility equations were determined for evaluating irrotational flows. 
Two distinct sets were determined for evaluating rotational flows. When the two 
different finite difference schemes are considered (i.e., average coefficients or 
average properties), ten numerical schemes result for irrotational flow and four 
for rotational flow. All these schemes were investigated numerically for the same 
initial conditions in order to study the behavior of the schemes in an attempt to 
determine the better schemes. 

111. OVERALL NUMERICAL ALGORITHM 

Complete numerical algorithms were developed and programmed for computer 
evaluation for all of the ten schemes discussed above. All the point schemes were 
based on extending Mach lines forward from two known points to locate the 
solution point, and in the case of rotational flow, the streamline was extended 
backward to intersect the line between the two initial points. Several flows were 
analyzed in this study. These were: Expanding source flows in conical boundaries; 
expanding flows in parabolic boundaries; and diffusing sink flows in conical 
boundaries. 

FIG. 3. Overall Mach line pattern in an expanding flow. 

Figure 3 illustrates the flow field for the expanding conical source flow. In all 
the studies, the initial-value line was a circular arc segment of a source flow tangent 
to the solid wall at the point of intersection. The initial-value line was divided 
into a number of equally spaced angular increments. The method of characteristics 
point scheme was applied down right-running Mach lines to the centerline starting 
first on the initial-value line at the centerline, and then from each higher point on 
the initial-value line until the wall is reached. At that point, a wall point is deter- 
mined as the intersection of the left Mach line from the second point on the 
previous right Mach line, with the wall contour. A right Mach line is then extended 

.+/II/Z-5 
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from the new wall point to the centerline, and the process is repeated until the 
entire flow field has been evaluated. Following this procedure, the entire 
characteristic network and flow properties at all points of the network are 
determined. 

The singularity in the nonhomogeneous term at the centerline was evaluated as 
follows. On the centerline, 

v/y = u(u/~)/y = u tan 8/y s uO/y. (18) 

The term is then approximated by evaluating u on the centerline and (0/y) at the 
last point on the right-running Mach line above the centerline. This technique is 
equivalent to requiring that (de/dy) = constant in the close neighborhood of the 
centerline. Obviously, other approximations could be employed, and at the outset 
of this investigation, several other schemes were considered. However, the numer- 
ical accuracy obtained with this scheme was comparable with the accuracy of the 
interior and wall point schemes, so no further studies were made of this approxima- 
tion. 

Figure 3 illustrates selected characteristic curves, namely, those originating on 
the initial-value line at both the wall and centerline, and their reflections through- 
out the nozzle. The location of the characteristics are determined from the integra- 
tion of the characteristic equations, and the flow properties along the character- 
istics are determined from the integration of the compatibility equations. Accuracy 
studies should consider both the accuracy of the location of the characteristics, 
as well as the accuracy of the flow properties on the characteristics. Numerical 
results were obtained for the location of points A-E shown in Fig. 3, and for the 
flow properties at these points. These studies were conducted for both irrotational 
and rotational initial-value lines, various specific heat ratios, a range of initial 
Mach numbers, both source and sink flows in conical and parabolic contours, and 
a large range of step sizes, for all ten of the numerical algorithms discussed above. 
The effect of iterating the corrector to a specified tolerance was investigated. 
The actual conditions investigated and the results obtained are presented in the 
following sections. 

IV. ACCURACY CONSIDERATIONS 

When studying the accuracy of a numerical scheme, two different properties are 
of interest: the absolute error of the scheme, and the order of the accumulated 
error of the scheme. Two methods exist for determining these quantities. The first 
method involves calculating the solution of a flow for which an exact solution 
exists, and then computing the absolute error and order of the scheme directly. 
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The computed and exact solution can be related as follows: 

C = E + A,h + A2h2 + ... + A.h’” + “‘2 (19) 

where C is the computed solution, E is the exact solution, h is the step size, and 
the A, are proportionality constants which must be determined numerically. For 
a scheme having nth-order accuracy, the first nonvanishing term in Eq. (19) is 
A,h”. In general, nothing can be said about the higher-order terms. However, for 
sufficiently small step size h, these terms should vanish, and the accumulated error 
is then proportional to h”. In the present investigation, these terms were found to 
vanish by actual numerical computation. However, for flows near a singular point 
or in regions of extremely large gradients, these terms may not vanish. The order 
of a scheme can be determined numerically by evaluating the exact error for two 
step sizes, one half the other, and then determining the ratio of these errors, which 
is proportional to h”/(h/2)“, or 2”. For a second-order scheme, this ratio is 4. This 
is obviously the best way to evaluate the order of a numerical scheme, but 
unfortunately, in multidimensional flows, very few exact solutions exist. One 
exact solution is for expanding source flow or diffusing sink flow in a conical 
passage. Extensive source flow accuracy studies are presented in this paper. 
However, source flow is a well-behaved flow with straight streamlines. In order to 
study flows with curved streamlines, flows in parabolic contours were also investi- 
gated. However, no exact solution for such flows is available. 

The second method for determining the error and order of error of a numerical 
scheme requires the numerical evaluation of the exact solution. This can be accom- 
plished with Eq. (19) by computing the solution at a given step size h, then 
successively halving the step size and recomputing the flow field until enough 
numerical results are available to evaluate the coefficients A, which are significant 
and the exact solution E. From these results, the accuracy and order of the scheme 
can be determined as discussed above. This method was employed for the flows 
in parabolic contours. This idea of a deferred approach to the limit (first introduced 
by Richardson and Gaunt [3]) can sometimes fail, although not in a well-behaved 
problem such as considered herein. 

Thus, by either method, the ratio of the errors for successively halved step sizes 
can be determined, and this ratio should be approximately 4 for a second-order 
scheme. The exact step size at which this ratio becomes 4 depends on many factors, 
but mainly the gradients in the flow. Thus, for a well-behaved flow such as a 
source flow, the scheme may approach second order at a relatively large step size, 
whereas for a highly distorted flow such as occurs near a Prandtl-Meyer corner, 
the scheme may approach second order only for very small step sizes. However, 
the basic order of the scheme can be determined from smooth flows, and this 
order would then be expected even in highly distorted flows for some small step 
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size. Thus, the study of source flow is very useful in determining the order of a 
scheme. 

The accuracy obtainable with the second method discussed above was studied 
by constructing the characteristic network in a source flow field using a fifth-order 
Runge-Kutta scheme with a step size of O.OOOly, . The Mach lines in any flow are 
given by the integrals of Eq. (3), which require that 0(x, y) and LY(X, u) be known. 
In a source flow, these two functions are known from the exact, one-dimensional 
solution for the source flow. Employing Eq. (3) the functions 19(x, ,u) and a(x, ,v) 
for source flow, and a fifth-order Runge-Kutta scheme, the locations of points A, 
B, and C in Fig. 3 were evaluated to a high degree of accuracy. Then the numerical 
method of characteristics was employed at successively halved step sizes to deter- 
mine the location of these same points. When these results from the numerical 
method of characteristics for x and y at points A, B, and C were substituted into 
Eq. (19) to evaluate numerically the exact location of these points, the locations 
were predicted by Eq. (19) within O.OOOOlyt of the position predicted by the fifth- 
order Runge-Kutta results. These results certainly substantiate the soundness of 
this second method for evaluating the error of a numerical scheme. Using this 
scheme, accuracy studies can be performed even in situations where no exact 
solution exists. 

The accuracy studies conducted during this investigation consisted of both 
comparisons with known exact solutions and comparisons with numerically gener- 
ated exact solutions. The results are presented in two forms. The first consists of 
presenting the solution (both location and flow properties) at a given point in the 
characteristic network as a function of step size. The second consists of presenting 
the solution for a particular flow property (primarily velocity magnitude V) along 
the wall or centerline of the flow passage for several step sizes. In all cases, the 
step size used to correlate the results is the uniform angular step size on the 
initial-value line. Since the characteristic network follows Mach lines and their 
reflections from the wall and centerline, the overall grid is self-regulating, and 
halving the step size on the initial-value line effectively halves the step size through- 
out the flow field. 

A word of caution should be entered here. The ideas of accuracy and order of 
accuracy presented here, as well as the concept of the modified Euler scheme, are 
strictly correct for total differential equations. The characteristic and compatibil- 
ity equations are not strictly speaking total differential equations since the indepen- 
dent direction of differentiation is not the same in all the simultaneous equations. 
These equations could better be termed total differential relationships which can 
be solved by the numerical techniques applicable to total differential equations. 
Thus, it is not obvious that all the concepts discussed above should hold for the 
numerical method of characteristics. However, during this investigation, it was 
verified that these concepts do indeed carry over to the present problem. 
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V. COMPUTER PROGRAM DESCRIPTION 

The computer program developed during this investigation was written for the 
CDC 6500 computer, which has approximately fourteen significant figures. Thus, 
round-off error was assumed to be negligible in these studies. A single program 
was written to accomplish the input, the generation of the initial-value line, and 
the control of the logic for evaluating the flow field. Twenty completely separate 
subroutines were employed for evaluation of the properties of each point in the 
characteristic network: an interior point routine and a boundary point routine 
based on each of the five sets of compatibility equations for both the average 
coefficient technique and the average property technique. In this manner, all the 
numerical results were based on equivalent initial data, and all the flows were 
obtained in the same overall manner. The twenty computational subroutines were 
constructed with great care to represent exactly the numerical scheme being 
employed. 

The thermodynamic properties of the fluid were specified in terms of the specific 
heat ratio y, nominally 1.2, the gas constant R, nominally 60.0 (ft-lbf)/(lbm-R), 
the stagnation temperature r,, , nominally 6000 R, and the stagnation pressure P0 , 
nominally 1000 psia. Variations in these parameters were studied numerically. 
For cases where 7’, and I’,, are uniform across the initial-value line, the flow will 
be irrotational. Such flows were analyzed by all the numerical algorithms. Rota- 
tional initial-value lines were obtained by specifying arbitrarily a linear variation 
of r, and PO across the initial-value line. Such flows were analyzed by the four 
rotational flow algorithms. 

As mentioned earlier, the initial-value line is a source flow whose source angle 
was nominally chosen as 15 degrees. Points equally spaced in angle along this 
line comprised the initial-data points. The number of these points was varied 
through the values of 3, 6, 11, 21, 41, 81, and 161. The bulk of the results were 
obtained for 3, 6, 11, and 21 initial points. 

The wall boundary was specified as either a conical wall or a parabolic wall. 
In both cases, the wall contour was given as an analytical function 4’ = y(x), and 
the intersection of left-running Mach lines with the wall were determined by 
solving simultaneously this equation with the equation for a left-running Mach 
line. All ten boundary subroutines employed the same wall point location scheme. 

For source flows, the exact error in flow properties at each point was evaluated 
by comparing the numerical solution with the exact source flow solution. The 
exact solution is given by the well-known one-dimensional, isentropic flow func- 
tions, which were programmed in terms of the source flow radius at each point 
in the how field. 
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VI. NUMERICAL STUDIES 

Extensive numerical studies were conducted using the schemes discussed in the 
previous sections. In order to simplify the presentation of the enormous amount 
of results shown in the following figures, the legend presented in Table I is employed 
to identify the ten numerical algorithms. In all cases, the open symbols represent 
schemes based on averaging the entire coefficient of all the differentials, while the 
closed symbols denote schemes based on evaluating the coefficients at average 
values of the properties. 

TABLE1 

Legend for Numerical Schemes 

Scheme 1, u-u, irrotational, average coefficient 

Scheme 1, u-v, irrotational, average property 

Scheme 2, V-8, irrotational, average coefficient 

Scheme 2, V-O, irrotational average property 

Scheme 3, u-v, irrotational, average coefficient 

Scheme 3, u-u, irrotational, average property 

Scheme 4, u-v, rotational, average coefficient 

Scheme 4, u-u, rotational, average property 

Scheme 5, V-O, rotational average coefficient 

Scheme 5, V-8, rotational, average property 
- 

The nominal case considered in this study was a 15-degree source flow with 
y = 1.2, R = 60 (ft-lbf)/(lbm-R), T,, = 6000 R, and PO = 1000 psia. Figure 4 
presents the exact source flow solution for the velocity along the wall in this 
flow with the initial Mach number as a parameter. Several features of importance 
to the numerical investigation can be seen from these results. First, for initial 
Mach numbers near unity, the initial expansion is highly nonlinear, and a second- 
order scheme may not demonstrate its second-order accuracy until the step size 
is very small. In general, when the solution itself is a second-order polynomial, 
second-order numerical schemes yield very high accuracy. At the higher Mach 
numbers the solution becomes almost linear, and a second-order numerical scheme 
should exhibit its second-order behavior even at relatively large step sizes, and the 
solution should be more accurate than those for the lower initial Mach numbers. 
All of these characteristics were found in the numerical studies conducted herein. 

Once some error has accumulated, the solution is then effectively following a 
different member of the family of solutions to the differential equations. Thus, 
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FIG. 4. Exact wall velocities for a 15” source flow, y = 1.2, with Mi as a parameter. 

WALL VELOCITIES 

when some initially large error is produced for Aows near the sonic condition, 
the numerical solution then tends to follow a different solution curve. However, 
for expanding flows, all of the solution curves are converging. Thus, large errors 
created initially should tend to decrease as the solution approaches the higher 
velocities. For diffusing flows, the opposite is true. The family of solutions diverges, 
and even small initial errors may result in a large final error. The effect of gradients 
in stagnation pressure and stagnation temperature should be similar to the effects 
of gradients in the flow properties. Large stagnation property gradients should 
require smaller step sizes for comparable accuracy then small or no stagnation 
property gradients. The combination of large stagnation property gradients and 
low initial Mach number should result in the most severe limitations on the numer- 
ical accuracy. All of these general comments were substantiated by the numerical 
results obtained during this study. 

Basic IS-Degree Source Flow Studies 

The nominal case described above was evaluated by all ten numerical algorithms 
with an initial Mach number of 1.05 and no stagnation property gradients. The 
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corrector was applied repeatedly until properties converged to a fractional tolerance 
of 0.00001. The results are presented in terms of values of x, y, V, and 8 at points 
A, B, and C in Fig. 3 as a function of the angular step size (AB/oI) on the initial- 
value line. Values of U, U, p, and p also could have been presented, but it was 
found that the trends exhibited by these variables agreed with the trends exhibited 
by I/ and 8. Figure 5 presents the results at point A. The exact values at (A e/a) = 0 
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(A&a) ON INITIAL-VALUE LINE 

FIG. 5. Error study at point A for a 15” source flow initial-value line with M, = 1.05, 15” 
half-angle diverging contour, y = 1.2. 

were obtained from the fifth-order Runge-Kutta results, and substantiated by 
the numerical evaluation of the exact solution as discussed earlier. The second- 
order nature of all the schemes is apparent, although some schemes yield better 
absolute accuracy than others. For instance, schemes 1 and 3 based on averaging 
coefficients (i.e., q and 0) both exhibit very poor absolute accuracy. In general, 
for all five schemes more accurate results were obtained using average property 
schemes rather than average coefficient schemes. The results shown in Fig. 5 are 
based entirely on interior point calculations since the effects of neither boundary 
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are felt at this point. One of the most surprising results of the entire numerical 
investigation was the change in the absolute accuracy of scheme 3 from very poor 
accuracy based on averaging coefficients to one of the most accurate when based 
on averaging properties. This result was found consistently in all the studies at 
all step sizes, initial Mach numbers, source angles, and specific heat ratios. An 
attempt to explain this behavior theoretically was not successful. Unexpected and 
unexplainable results such as this vividly demonstrate the value and necessity of 
carefully executed accuracy studies. 

In Fig. 6, the numerical results for the nominal case are presented at point B. 
The solution at this point is influenced by both the interior point scheme and the 
centerline scheme, but not by the solid boundary scheme. Since 0 and y are zero, 
only V and x values are presented. All ten schemes exhibit second-order accuracy, 
with scheme 3 exhibiting the same peculiar behavior. The x location appears to 
be predicted more accurately by the average property schemes. 

FIG. 6. Error study at point B for a 15” source flow initial-value line with M, = 1.05, 15” 
half-angle diverging contour, y = 1.2. 



224 HOFFMAN 

The properties at point C are influenced by the interior and wall point schemes, 
but not by the centerline point scheme. Since 3: = q(x) and 0 = 15 degrees, 
Fig. 7 presents only V and x values. The average property schemes are all superior 
to all the average coefficient schemes. The second-order accuracy of all the schemes 
is evident. 

62: 

A 

0 

10. 

I25 
> 

(AfWCf) ON INITIAL-VALUE LINE 

FIG 7. Error study at point C for a 15” source flow initial-value line with M, = 1.05, 15” 
half-angle diverging contour, y = 1.2. 

Similar results were obtained at points D and E. The main difference was in 
increased scatter of the results observed as the point of observation moved down 
the nozzle, which is indicative of the increasing interplay of the errors as the 
solution proceeds. 

Based on the results presented in Figs. 5-7, it appears that schemes based on 
average properties are somewhat superior to schemes based on average coefficients. 
Scheme 3, which has the least complex compatibility equation, was found to be 
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highly inaccurate for the average coefficient scheme and highly accurate for the 
average property scheme. Most of the schemes exhibited reasonable absolute 
accuracy even for step sizes of (LIB/IX) = 0.5, in which only three points were 
specified on the initial-value line. All the schemes exhibited second-order accuracy 
at all points investigated, although the scatter increased as the solution progressed 
down the flow field. Since this flow was irrotational, both the rotational and 
irrotational schemes were employed in the comparison, and it appears that the 
rotational flow schemes have accuracy comparable to the irrotational flow schemes 
in spite of the potentially larger error due to locating the streamline, interpolating 
for its initial properties, and integrating two additional compatibility equations. 
These results suggest the use of rotational flow schemes even for irrotational 
flows; thus a single program would be capable of handling both types of flows. 

Variations of the Basic Studies 

The investigations presented in the basic studies were repeated for several 
variations around the nominal case. These were: a parabolic wall, a specific heat 
ratio of 1.4, an initial Mach number of 1.5, and gradients in the stagnation prop- 
erties. The results of these studies enforced the conclusions drawn above based 
on the basic studies. 

Figure 8 presents the solution at point D for a parabolic wall having an initial 
angle of I5 degrees to match the source flow initial-value line, and an exit angle of 
10 degrees. This flow is obviously not a severely distorted flow, but it does involve 
some streamline curvature. The results illustrate the second-order accuracy of the 
scheme, and suggest that the rotational flow techniques are slightly more accurate. 
Again, the average property schemes are generally superior to the average coeffi- 
cient schemes. Similar results were obtained for parabolic walls with exit angles 
of 5 degrees. 

Results analogous to Fig. 5, for y = 1.4 instead of 1.2, were obtained. Again, 
the schemes were second-order, the accuracy was comparable to that obtained 
for y = 1.2, and the rotational flow schemes appeared to be the most accurate. 
The average property schemes were again generally superior. 

All of the results presented so far were for an initial-value line Mach number of 
1.05, which resulted in large property gradients in the neighborhood of the initial- 
value line. Figure 9 presents results analogous to Fig. 5, for Mi = 1.50 instead of 
1.05. Due to the smaller gradients, more accurate results are expected, and this 
is the case as can be seen by comparing the two figures. All of the trends are the 
same, except that the scatter with increasing step size has been decreased. Again, 
the average property schemes appear to be the most accurate. Similar studies 
were conducted for initial Mach numbers of 1. I, 1.2, 2, 3, 4, 6, and 8. In all cases, 
the general trends were the same. 

Studies were also conducted for rotational initial-value lines. These lines were 
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FIG. 8. Error study at point D for a 15” source flow initial-value line with M, = 1.05, para- 
bolic contour from 15” entrance to 10” exit, y = 1.2. 

obtained by specifying the Mach number and stagnation properties at the wall 
on the initial-value line, a linear stagnation property gradient across the flow, and 
a uniform static pressure across the same spherical surface employed as the initial- 
value line in the previous studies. A stagnation pressure increase of 100 psi was 
specified, and stagnation temperature increases of both 500 R and 1000 R were 
investigated. Figure 10 presents the solution at point A for an initial Mach number 
of 1.05 and a stagnation temperature gradient of 1000 R. Since the flow is now 
rotational, results are presented only for schemes 4 and 5. This combination of 
low initial Mach number and large stagnation property gradients should result 
in a severe test of the schemes. As seen in the figure, all the schemes are second- 
order for sufficiently small step size. The scatter in the results as the step size 
increases is large, as expected. Overall, the average property schemes appear more 
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FIG. 9. Error study at point A for a 15” source flow initial-value line with A4, = 1.50, 15” 
half-angle diverging contour, y = 1.2. 

accurate. Similar results were obtained for the same stagnation property gradients 
but an initial Mach number of 2.0. The results were second-order, and the absolute 
accuracy was extremely good. Studies with a stagnation temperature change of 
only 500 R and the same two initial Mach numbers produced accuracies in 
between the results of the two previous cases and the results with constant stag- 
nation properties. These results suggest that gradients in stagnation properties 
must be given serious consideration when selecting the step size, especially in 
flows near the sonic condition. The combination of high flow gradients near the 
sonic condition and large stagnation property gradients combine to decrease fur- 
ther both the absolute accuracy and order of accuracy of the scheme. 

WaN and Centerhe Velocity Studies 

From the results already presented, it appears that scheme 5 is representative 
of the best accuracy which can be obtained by the axisymmetric method of char- 
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FIG. 10. Error study at point A for a rotational initial-value line with LIP = 100 psi and 
AT = 1000 OR, M, = I .5, 15” half-angle diverging contour with y  = 1.2. 

acteristics. In this section, results for the wall and centerline velocities are presented 
for scheme 5 to illustrate further the properties of the numerical algorithm. All of 
these studies employed the nominal case data. Figure 11 presents the error in 
velocity along the wall as a function of step size on the initial-value line for both 
the average coefficient and the average property techniques. From these results, 
the second-order behavior of the scheme is clearly evident. The bumps in the 
average coefficient curves occur where the second reflection of the Mach line of 
the initial-value line and the centerline intersects the wall. The sudden jumps in 
the average property curves occur at the first intersection with the same Mach 
line. A point of great interest shows clearly on these curves. This is the initial 
large error incurred on the very first point on the wall. This initial error itself is 
also clearly second-order. The cause of this large initial error is the steep flow 
gradients on the initial-value line, which in this case has a Mach number of 1.05. 
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FIG. 11. Error study along the wall for a 15” source flow initial-value line with M, = 1.05, 
15” half-angle diverging contour, y = 1.2, scheme 5, with 6, 11, 21 and 41 points on the initial- 
value line. 

This large initial error was present in all studies when the initial value Mach 
number was near unity. This occurs because the coefficients in the differential 
equations may change magnitude by as much as a factor of 2 within a point 
evaluation when the Mach number is near unity. For example, the coefficient 
(u” - a”) in scheme 1 roughly doubles when the Mach number changes from 1.05 
to 1.10. Once the initial steps have been taken, the region of high gradients has 
been completed and the errors diminish greatly in magnitude. The fact that the 
errors tend toward zero is a fortuitous combination of the basic characteristics of 
the numerical algorithm and the converging nature of the velocity field. These 
results suggest that very small step sizes are required when the flow is near the 
sonic condition. Although not investigated here, it seems feasible that some large 
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number of initial-value line points, such as 41, could be used to advance the 
initial-value line one, two, or three steps out into the flow field, where the number 
of points could then be reduced considerably for the remainder of the solution. 

Figure 12 presents the centerline velocity error for the same conditions of 
Fig. 11. These results substantiate the conclusions drawn from Fig. 1 I. The dis- 
continuities occur where the first Mach line from the wall intersects the centerline. 
From both these figures, it is evident that the average property scheme results in 
an error of approximately only one-half the error of the average coefficient scheme. 
This characteristic was observed in most of the results obtained during this investi- 
gation. As a result, the average property scheme is recommended over the average 
coefficient scheme. 
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1.05 15” half-angle diverging contour, y = 1.2, scheme 5, with 6, 11, 21 and 41 points on the 
initial-value line. 
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FIG. 13. Error study along the wall for a 15” source flow initial-value line with 11 points 
15” half-angle diverging contour, y = 1.2, with A4* = 1.05, 1.1, 1.2, 1.5,2,4,6, and 8, scheme 5. 

Figure 13 presents results for the same nominal conditions as in Figs. 11 and 
12, with the initial-value line Mach number as a parameter. The effect of the large 
gradients near the sonic condition is clearly evident. Both schemes, the average 
property and average coefficient techniques, are basically under-predicting schemes 
once the initial error due to the large gradients has been made. As the initial Mach 
number is increased, the initial error approaches zero, and the error then grows 
in a bounded monotonic fashion, as expected. These results clearly favor the 
average property scheme and the use of a large number of initial-value line points 
for near sonic flows. Eleven initial-value line points were used. 

Comparison of Prodicting, Correcting, and Iterating 

Several possibilities exist in the development of the overall algorithm. All the 
schemes presented in this study are based on an Euler predictor and a modified 
Euler corrector, with or without iteration. In this section, a comparison is made 
of several of these possibilities. 

581/x1/2-6 
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FIG. 14. Error study along the wall for a 15” source flow initial-value line with MS = 1.05, 
15” half-angle diverging contour, y = 1.2, scheme 5, with 6, 11 and 21 points on the initial-value 
line, illustrating predict only and predict-correct once results. 

Figure 14 presents the error in wall velocity for the nominal conditions of this 
investigation as calculated by scheme 5 using the average property technique. 
The dashed curves were obtained using only the Euler predictor, which theoreti- 
cally should be first order, as it clearly is. The solid curves were obtained with one 
application of the modified Euler corrector, which is theoretically and numerically 
second order. A tremendous improvement in absolute accuracy is also obtained 
with the corrector. Similar results were obtained with the other four schemes with 
both the average property and average coefficient techniques. These results clearly 
demonstrate the desirability of the higher-order scheme. 

However, it is not clear whether or not the repeated application of the corrector 
is worthwhile. This question is studied in Fig. 15, where the same conditions as 
in Fig. 14 were investigated by scheme 5 with both the average property and 
average coefficient techniques. Results are presented for one, two, and three 
applications of the modified Euler corrector. The basic character of the average 
coefficient scheme is unchanged by repeated applications of the corrector. The 
basic character of the average property scheme appears to change from an over- 
predicting to an under-predicting scheme. However, in both cases, no advantage 
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FIG. 15. Error study along the wall for a 15” source flow initial-value line with kfi = 1.05, 
15” half-angle diverging contour, y = 1.2, scheme 5, with 11 points on the initial-value line, 
illustrating the effects of the number of applications of the corrector. 

seems to occur due to the repeated application of the corrector, except for the 
decrease in initial error observed for the average property scheme. This is a gen- 
eral conclusion substantiated by all the studies conducted during this investigation. 

Figure 16 presents results for the same conditions as studied in Fig. 15, with 
the corrector applied repetitively until the solution converged to within a specified 
fractional tolerance. These results clearly demonstrate that converging to a frac- 
tional tolerance smaller than 0.001 is of no benefit. In fact, the results for a 
tolerance of 1O-8 in some cases required as much as twice the computer time as 
the 1O-3 results with no change in the solution. A fractional tolerance of 0.01 gen- 
erally yields a predict-correct once solution, particularly for the average coefficient 
case. However, for the average property case, the large (relatively speaking) 
initial error shown on Fig. 15 has been eliminated, and the bulk of the 1O-2 and 
correct-once results are comparable. These results suggest the use of a coarse 
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FIG. 16. Error study along the wall for a 15” source flow initial-value line with M, = 1.05, 
15” half-angle diverging contour, y = 1.2, scheme 5, with 11 points on the initial-value line, 
illustrating the effect of a fractional convergence tolerance. 

convergence tolerance such as 0.01 to 0.005, which generally results in a predict- 
correct once scheme except in regions of large gradients where several applications 
of the corrector may be required. This conclusion was reached for all the numerical 
schemes studies during this investigation. Thus, iteration to a tight fractional 
tolerance does not appear to be warranted in any case. 

Comparison of Grid Schemes 

In Fig. 2, three different grid schemes were illustrated for the rotational flow 
method of characteristics. Scheme III was employed throughout all the investiga- 
tions presented heretofore. An investigation was made of these three grid schemes 
using method of characteristics scheme 5 based on average properties. Additionally, 
left-running Mach lines were forced to intersect the wall at equally spaced points, 
from which right-running Mach lines were reflected into the flow field. The center- 
line intersections were performed as before, by simply reflecting the incident right- 
running Mach waves back into the flow field. Studies were conducted for the 
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nominal conditions with 11, 21, and 41 initial-value line points. The results are 
presented in Fig. 17. All three schemes are clearly second order, and the absolute 
accuracy of all three is almost equal. The large initial errors due to the large 
gradients near the sonic point are evident. Based on studies such as this, it was 
concluded that the three grid schemes yield comparable results, and the choice 
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FIG. 17. Error study along the wall for a 15” source flow initial-value line with Mi = 1.05, 
15” half-angle diverging contour, y = 1.2, Scheme 5, with 11, 21, and 41 initial-value line points, 
illustrating the differences between the three characteristic net grid schemes shown in Fig. 2. 

between them must be based on other considerations. Scheme III was employed 
during the present investigations for two reasons: first, the streamline length is 
smaller than for either of the other two methods, and second, some simplifications 
in programming logic are possible with this scheme. It should be stressed that 
these results apply only to nondissipative flows. For dissipative flows, such as 
gas-particle flows and nonequilibrium, reacting flows, the characteristic grid 
scheme should be based on the streamline and either of the two Mach lines, instead 
of the two Mach lines as chosen in the present investigations, 



236 HOFFMAN 

Results for Difsung Flows 

All of the results presented so far have been for expanding flows, with their 
favorable converging solution character. Diffusing flows have the opposite char- 
acter, the solution curves being closely spaced at the high Mach numbers and 
diverging as the Mach number decreases. This can be seen in Fig. 4 for the wall 
velocity in a 15 degree sink flow by realizing that the flow progresses from high 
to low velocities in a diffusing flow. As demonstrated in Fig. 13, the initial errors 
in flows with large initial Mach numbers are small, and they grow in a bounded 
manner. This same small initial error should occur in diffusing flows starting at 
high initial Mach numbers, but the error should grow rapidly as the flow 
approaches the lower Mach numbers. In fact, near the sonic condition, the error 
may grow without bound. Figure 18 presents the wall pressure for a diffusing 
15 degree sink flow with an initial Mach number of 3.0. These results were obtained 
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FIG. 18. Error study along the wall for a 15” sink flow initial-value line with a Mach number 
A& = 3.0, 15” half-angle converging contour, y = 1.2, scheme 5, with 6, 11, and 21 points on the 
initial-value line. 



METHOD OF CHARACTERISTICS ACCURACY 237 

with scheme 5 using the average property technique, both for the predict-correct 
scheme and for iteration to a fractional tolerance of 0.000001. From these results, 
it is seen that the scheme is clearly second order. In addition, the initial errors are 
extremely small. As expected, the errors grow rapidly as the flow decelerates, and 
the error growth rate appears unbounded. In this case of diffusing flow, the use of 
iteration appears worthwhile. Similar results were obtained for the other numerical 
schemes. These results suggest that a coarse grid may be employed initially in 
high Mach number diffusing flows, and that the grid spacing should be decreased 
as the Mach number decreases, approaching the range of 21 to 41 points across 
the flow when the sonic condition is approached. 

Studies such as those presented in Figs. 5-16 for accelerating flows were con- 
ducted for diffusing flows. In general, all of the conclusions reached for the accele- 
rating flows were valid for the diffusing flows, except for the use of iteration, 
which appears worthwhile for diffusing flows. The only major difference in the 
results is the unbounded error growth discussed in conjunction with Fig. 18. 

Some Two-Dimensional Results 

Several of the studies described above were conducted for planar, two-dimen- 
sional flow. In general, the conclusions reached for axisymmetric flows are valid 
for two-dimensional flow. The major difference is in the magnitude of the absolute 
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FIG. 19. Error study along the wall and centerline for a 15” source flow initial-value line with 
Ma = 1.05, 15” half-angle diverging contour, y = 1.2, scheme 5, with 11 and 21 points on the 
initial-value line, for a planar, two-dimensional flow field. 
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accuracy, which was much better for the two-dimensional flows. This was expected 
since the flow gradients are much smaller in two-dimensional flows. As an example, 
Fig. 19 presents the wall and centerline velocity distributions for the nominal 
conditions discussed earlier, for scheme 5 with average coefficients. As illustrated, 
the initial error is small, and the error grows in a bounded manner. The centerline 
and wall solutions have comparable accuracies since the nonhomogeneous term 
of axisymmetric flow is not present. The solution is clearly second order. These 
results can be compared with the equivalent axisymmetric case, presented in 
Figs. 11 and 12. In addition to the different trends discussed above, it is seen that 
the level of error is ten times smaller than in the axisymmetric case. Thus, for 
comparable accuracy, much larger step sizes may be taken in planar, two-dimen- 
sional flows as compared with axisymmetric flows. 

CONCLUSIONS 

The results of these studies, although strictly valid only for the conditions 
actually investigated, suggest some general guidelines for the application of the 
numerical method of characteristics to axisymmetric, supersonic flows. For rota- 
tional flows, a grid scheme based on following Mach lines and extending the 
streamline back to intersect the line between the two initial points is satisfactory. 
For irrotational flows, the results obtained with rotational flow schemes were of 
comparable accuracy, suggesting the exclusive use of rotational flow schemes in 
order to obtain a single scheme capable of handling both irrotational and rotational 
flows. In many cases, the results based on the average property schemes were more 
accurate than those based on the average coefficient schemes. Thus, the use of 
the average property scheme is recommended. The results of the studies of predict, 
predict-correct, and iterate, clearly suggest the use of a predict-correct once 
scheme with a coarse convergence tolerance overriding in regions of high gradients. 
In regions of large flow gradients or stagnation property gradients, a large number 
of grid points is required. For expanding flows, the number of points can be 
decreased as the solution progresses, but for diffusing flows, the opposite trend 
must be enforced. Some limited results for two-dimensional flow demonstrated 
the superior accuracy attainable for such flows. Overall, these studies present a 
favorable picture of the accuracy attainable by the numerical method of character- 
istics. It is hoped that these studies will encourage other similar studies, and thus 
greatly expand the understanding of the behavior of the numerical method of 
characteristics. 
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